
slide 1

CS 345

Potted History of
Programming Languages

Vitaly Shmatikov

slide 2

Quote of the Day

“I have regarded it as the highest
goal of programming language
design to enable good ideas to be
elegantly expressed.”

- C.A.R. Hoare

slide 3

Algorithm

Abu Ja’far Muhammad ibn Musa
al-Khorezmi (“from Khorezm”)
• Lived in Baghdad around 780 – 850 AD
• Chief mathematician in Khalif Al Mamun’s

“House of Wisdom”
• Author of “A Compact Introduction To

Calculation Using Rules Of Completion
And Reduction”

Removing negative units from the equation by
adding the same quantity on the other side
(“al-gabr” in Arabic)

slide 4

“Calculus of Thought”

Gottfried Wilhelm Leibniz
• 1646 - 1716
• Inventor of calculus and binary system
• “Calculus ratiocinator”: human reasoning

can be reduced to a formal symbolic
language, in which all arguments would
be settled by mechanical manipulation of
logical concepts

• Invented a mechanical calculator

slide 5

Formalisms for Computation (1)

Predicate logic
• Gottlöb Frege (1848-1925)
• Formal basis for proof theory and

automated theorem proving
• Logic programming

– Computation as logical deduction

Turing machines
• Alan Turing (1912-1954)
• Imperative programming

– Sequences of commands, explicit state
transitions, update via assignment

slide 6

Formalisms for Computation (2)

Lambda calculus
• Alonzo Church (1903-1995)
• Formal basis for all functional

languages, semantics, type theory
• Functional programming

– Pure expression evaluation, no
assignment operator

Recursive functions & automata
• Stephen Kleene (1909-1994)
• Regular expressions, finite-state

machines, PDAs

slide 7

Church’s Legacy

Alonzo Church (PhD Princeton 1927)

Hartley Rogers (PhD Princeton 1952)
1916 other
academic
descendantsRecursion theory

Albert Meyer (PhD Harvard 1972)

Vitaly Shmatikov (PhD Stanford 2000)

John Mitchell (PhD MIT 1984)

…

Semantics, concurrency

Theory of object-oriented languages

slide 8

Church’s Thesis

All these different syntactic formalisms describe
the same class of mathematical objects
• Church’s Thesis: “Every effectively calculable function

(effectively decidable predicate) is general recursive”
• Turing’s Thesis: “Every function which would be

naturally regarded as computable is computable by a
Turing machine”

Recursion, lambda-calculus and Turing machines
are equivalent in their expressive power
Why is this a “thesis” and not a “theorem”?

slide 9

Formalisms for Computation (3)

Combinatory logic
• Moses Schönfinkel (1889-1942??)
• Haskell Curry (1900-1982)

Post production systems
• Emil Post (1897-1954)

Markov algorithms
• Andrey Markov (1903-1979)

slide 10

Programming Language

Formal notation for specifying computations
• Syntax (usually specified by a context-free grammar)
• Semantics for each syntactic construct
• Practical implementation on a real or virtual machine

– Translation vs. compilation vs. interpretation
• C++ was originally translated into C by Stroustrup’s Cfront
• Java originally used a bytecode interpreter, now native

code compilers are commonly used for greater efficiency
• Lisp, Scheme and most other functional languages are

interpreted by a virtual machine, but code is often
precompiled to an internal executable for efficiency

– Efficiency vs. portability

slide 11

Assembly Languages

Invented by machine designers
the early 1950s
Mnemonics instead of
binary opcodes

push ebp
mov ebp, esp
sub esp, 4
push edi

Reusable macros and subroutines

slide 12

FORTRAN

Procedural, imperative language
• Still used in scientific computation

Developed at IBM in the 1950s by
John Backus (1924-2007)
• Backus’s 1977 Turing award lecture (see course

website) made the case for functional programming
• On FORTRAN: “We did not know what we wanted and

how to do it. It just sort of grew. The first struggle was
over what the language would look like. Then how to
parse expressions – it was a big problem…”

– BNF: Backus-Naur form for defining context-free grammars

slide 13

From FORTRAN to LISP

“Anyone could learn Lisp in one day,
except that if they already knew
FORTRAN, it would take three days”

- Marvin Minsky

slide 14

LISP

Invented by John McCarthy (b. 1927,
Turing award: 1971)
• See original paper on course website

Formal notation for lambda-calculus
Pioneered many PL concepts
• Automated memory management (garbage

collection)
• Dynamic typing
• No distinction between code and data

Still in use: ACL2, Scheme, …

slide 15

LISP Quotes

• “The greatest single programming language ever
designed” --Alan Kay

• “LISP being the most powerful and cleanest of
languages, that's the language that the GNU project
always prefer” -- Richard Stallman

• “Programming in Lisp is like playing with the
primordial forces of the universe. It feels like
lightning between your fingertips.” -- Glenn Ehrlich

• “Lisp has all the visual appeal of oatmeal with
fingernail clippings mixed in” -- Larry Wall

• “LISP programmers know the value of everything and
the cost of nothing” -- Alan Perlis

slide 16

Algol 60

Designed in 1958-1960
Great influence on modern languages
• Formally specified syntax (BNF)

– Peter Naur: 2005 Turing award

• Lexical scoping: begin … end or {…}
• Modular procedures, recursive procedures, variable

type declarations, stack storage allocation

“Birth of computer science” -- Dijkstra
“A language so far ahead of its time that it was
not only an improvement on its predecessors, but
also on nearly all its successors” -- Hoare

slide 17

Algol 60 Sample

real procedure average(A,n);
real array A; integer n;
begin

real sum; sum := 0;
for i = 1 step 1 until n do

sum := sum + A[i];
average := sum/n

end;

no array bounds

no ; here

set procedure return value by assignment

slide 18

Algol Oddity

Question
• Is x := x equivalent to doing nothing?

Interesting answer in Algol
integer procedure p;
begin

…
p := p
…

end;
• Assignment here is actually a recursive call

slide 19

Some Trouble Spots in Algol 60

Type discipline improved by later languages
• Parameter types can be array

– No array bounds

• Parameter type can be procedure
– No argument or return types for procedure parameter

Parameter passing methods
• Pass-by-name had various anomalies

– “Copy rule” based on substitution, interacts with side effects

• Pass-by-value expensive for arrays

Some awkward control issues
• Goto out of block requires memory management

slide 20

Algol 60 Pass-by-Name

Substitute text of actual parameter
• Unpredictable with side effects!

Example
procedure inc2(i, j);

integer i, j;
begin

i := i+1;
j := j+1

end;
inc2 (k, A[k]);

begin
k := k+1;
A[k] := A[k] +1

end;

Is this what you expected?

slide 21

Algol 60 Legacy

“Another line of development stemming
from Algol 60 has led to languages such
as Pascal and its descendants, e.g.,
Euclid, Mesa, and Ada, which are
significantly lower-level than Algol. Each
of these languages seriously restricts the
block or procedure mechanism of Algol by
eliminating features such as call by name,
dynamic arrays, or procedure parameters.”

- John C. Reynolds

slide 22

Algol 68

Very elaborate type system
• Complicated type conversions
• Idiosyncratic terminology

– Types were called “modes”
– Arrays were called “multiple values”

vW grammars instead of BNF
• Context-sensitive grammar invented by

A. van Wijngaarden

Eliminated pass-by-name
Considered difficult to understand

slide 23

Pascal

Designed by Niklaus Wirth
• 1984 Turing Award

Revised type system of Algol
• Good data structure concepts

– Records, variants, subranges

• More restrictive than Algol 60/68
– Procedure parameters cannot have procedure parameters

Popular teaching language
Simple one-pass compiler

slide 24

Limitations of Pascal

Array bounds part of type
procedure p(a: array [1..10] of integer)
procedure p(n: integer, a: array [1..n] of integer)

illegal

• Attempt at orthogonal design backfires
– Parameter must be given a type
– Type cannot contain variables

How could this have happened? Emphasis on teaching!

Not successful for “industrial-strength” projects
• See Kernighan’s “Why Pascal is not my favorite

language” on the course website

slide 25

SIMULA 67

Ole-Johan Dahl (1931-2002)
Kristen Nygaard (1926-2002)
• Joint 2001 Turing Award

First object-oriented language
• Objects and classes
• Subclasses and inheritance
• Virtual procedures

slide 26

BCPL / B / C Family

Born of frustration with big OSes
and big languages (Multics, PL/I, Algol 68)
Keep lexical scope and recursion
Low-level machine access
• Manual memory management
• Explicit pointer manipulation
• Weak typing (introduced in C)

Systems programming for small-memory machines
• PDP-7, PDP-11, later VAX, Unix workstations and PCs
• C has been called a “portable assembly language”

slide 27

BCPL

Designed by Martin Richards (1966)
Emphasis on portability and ease of compilation
• Front end: parse + generate code for virtual machine
• Back end: translate code for native machine

Single data type (word), equivalence of pointers
and arrays, pointer arithmetic – this is unusual!

“The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lays down the law on what is and what is not allowed; rather,
BCPL acts more as a servant offering his services to the best of his ability
without complaint, even when confronted with apparent nonsense. The
programmer is always assumed to know what he is doing and is not
hemmed in by petty restrictions.”

slide 28

Arrays and Pointers

An array is treated as a pointer to first element
BCPL: let V = vec 10

V!i to index the ith array element
C: A[i] is equivalent to

pointer dereference *((A) + (i))

slide 29

B

“BCPL squeezed into 8K bytes of
memory & filtered through Ken Thompson’s brain”
Very compact syntax
• One-pass compiler on a small-memory machine

– Generates intermediate “threaded code,” not native code

• No nested scopes
• Assignment: = instead of Algol-style :=

– How many times have you written if (a=b) { … } ?

• Pre-/postfix notation: x++ instead of x:=x+1
• Null-terminated strings

– In C, strings are null-terminated sequences of bytes referenced
either by a pointer-to-char, or an array variable s[]

slide 30

Lex the Language Lawyer

++x++ This is evaluated first
Increments x,
returns old value

Can only be applied
to l-value
(more about this
later in the course)

Not an l-value! This is illegal in C!

Now C++ …
class DoublePlus {
public:

// prefix operator
DoublePlus operator++() { … }
// postfix operator
DoublePlus operator++(int) { … }

};

What is this for?

slide 31

More Fun with Prefix and Postfix

What do these mean?

x+=x++

++x + x++

slide 32

C

Bell Labs 1972 (Dennis Ritchie)
Development closely related to UNIX
• 1983 Turing Award to Thompson and

Ritchie

Added weak typing to B
• int, char, their pointer types
• Typed arrays = typed pointers

– int a[10]; … x = a[i]; means
x = *(&a[0]+i*sizeof(int))

Compiles to native code

slide 33

Types in C

Main difference between B and C
Syntax of type rules influenced by Algol 68
• int i, *pi, **ppi;
• int f(), *f(), **f(), *(*pf)(), (*pf)(int);
• int *api[10], (*pai)[10];

Also structs and unions
What do these
declarations mean?

slide 34

Evolution of C

1973-1980: new features; compiler ported
• unsigned, long, union, enums

1978: K&R C book published
1989: ANSI C standardization
• Function prototypes as in C++

1999: ISO 9899:1999 also known as “C99”
• Inline functions, C++-like decls, bools, variable arrays

Concurrent C, Objective C, C*, C++, C#
“Portable assembly language”
• Early C++, Modula-3, Eiffel source-translated to C

slide 35

C++

Bell Labs 1979 (Bjarne Stroustrup)
• “C with Classes” (C++ since 1983)

Influenced by Simula
Originally translated into C using
Cfront, then native compilers
• GNU g++

Several PL concepts
• Multiple inheritance
• Templates / generics
• Exception handling

slide 36

Java

Sun 1991-1995 (James Gosling)
• Originally called Oak,

intended for set top boxes

Mixture of C and Modula-3
• Unlike C++

– No templates (generics), no multiple inheritance, no
operator overloading

• Like Modula-3 (developed at DEC SRC)
– Explicit interfaces, single inheritance, exception handling,

built-in threading model, references & automatic garbage
collection (no explicit pointers!)

Java 1.5 now has “generics”

slide 37

Other Important Languages

Algol-like
• Modula, Oberon, Ada

Functional
• ISWIM, FP, SASL, Miranda, Haskell, LCF, ML,

Caml, Ocaml, Scheme, Common LISP

Object-oriented
• Smalltalk, Objective-C, Eiffel, Modula-3, Self,

C#, CLOS

Logic programming
• Prolog, Gödel, LDL, ACL2, Isabelle, HOL

slide 38

… And More

Data processing and databases
• Cobol, SQL, 4GLs, XQuery

Systems programming
• PL/I, PL/M, BCPL, BLISS

Specialized applications
• APL, Forth, Icon, Logo, SNOBOL4, GPSS, VisualBasic

Concurrent, parallel, distributed
• Concurrent Pascal, Concurrent C, C*, SR, Occam,

Erlang, Obliq

slide 39

Forth

Program BIOS, bootloaders, device firmware
• Sun BIOS, Lockheed Martin’s missile tracking, FedEx

barcode readers …

hex 4666 dup negate do i 4000 dup 2* negate
do 2a 0 dup 2dup 1e 0 do 2swap * d >>a 4
pick + -rot - j + dup dup * e >>a rot dup
dup * e >>a rot swap 2dup + 10000 > if
3drop 2drop 20 0 dup 2dup leave then loop
2drop 2drop type 268 +loop cr drop 5de

+loop

slide 40

APL

Computation-intensive tasks, esp. in finance
• Mortgage cash flow analysis, insurance calculations, …

Got this?

slide 41

Brave New World

Programming tool “mini-languages”
• awk, make, lex, yacc, autoconf …

Command shells, scripting and “web” languages
• sh, csh, tcsh, ksh, zsh, bash …
• Perl, Javascript, PHP, Python, Rexx, Ruby, Tcl,

AppleScript, VBScript …

Web application frameworks and technologies
• ASP.NET, Ajax, Flash, Silverlight …

– Note: HTML/XML are markup languages, not programming
languages, but they often embed executable scripts like
Active Server Pages (ASPs) & Java Server Pages (JSPs)

slide 42

Why So Many Languages?

“There will always be things we wish
to say in our programs that in all
languages can only be said poorly.”

- Alan Perlis

slide 43

What’s Driving Their Evolution?

Constant search for better ways to build software
tools for solving computational problems
• Many PLs are general purpose tools
• Others are targeted at specific kinds of problems

– For example, massively parallel computations or graphics

Useful ideas evolve into language designs
• Algol → Simula → Smalltalk → C with Classes → C++

Often design is driven by expediency
• Scripting languages: Perl, Tcl, Python, PHP, etc.

– “PHP is a minor evil perpetrated by incompetent amateurs,
whereas Perl is a great and insidious evil, perpetrated by
skilled but perverted professionals.” - Jon Ribbens

slide 44

What Do They Have in Common?

Lexical structure and analysis
• Tokens: keywords, operators, symbols, variables
• Regular expressions and finite automata

Syntactic structure and analysis
• Parsing, context-free grammars

Pragmatic issues
• Scoping, block structure, local variables
• Procedures, parameter passing, iteration, recursion
• Type checking, data structures

Semantics
• What do programs mean and are they correct

slide 45

Core Features vs. Syntactic Sugar

What is the core high-level language syntax
required to emulate a universal Turing machine?
• Q: what is the core syntax of C?

– Are ++, --, +=, -=, ?:, for/do/while part of the core?

Convenience features?
• Structures/records, arrays, loops, case/switch?
• Preprocessor macros (textual substitution)
• Run-time libraries

– String handling, I/O, system calls, threads, networking, etc.

• “Syntactic sugar causes cancer of the semicolons”
- Alan Perlis

slide 46

Final Thoughts

There will be new languages invented
• You will have to spend time learning them on your own!
• For now, enjoy the luxury of being able to take a class

Conflicting goals for language design can lead to
feature creep and hideous complexity
• Exhibit A: PL/I
• Exhibit B: C++

Then someone gets fed up …
• A language that adopts the original simple and elegant

ideas, while eliminating the complexity (e.g., Java)

	Potted History ofProgramming Languages
	Quote of the Day
	Algorithm
	“Calculus of Thought”
	Formalisms for Computation (1)
	Formalisms for Computation (2)
	Church’s Legacy
	Church’s Thesis
	Formalisms for Computation (3)
	Programming Language
	Assembly Languages
	FORTRAN
	From FORTRAN to LISP
	LISP
	LISP Quotes
	Algol 60
	Algol 60 Sample
	Algol Oddity
	Some Trouble Spots in Algol 60
	Algol 60 Pass-by-Name
	Algol 60 Legacy
	Algol 68
	Pascal
	Limitations of Pascal
	SIMULA 67
	BCPL / B / C Family
	BCPL
	Arrays and Pointers
	B
	Lex the Language Lawyer
	More Fun with Prefix and Postfix
	C
	Types in C
	Evolution of C
	C++
	Java
	Other Important Languages
	… And More
	Forth
	APL
	Brave New World
	Why So Many Languages?
	What’s Driving Their Evolution?
	What Do They Have in Common?
	Core Features vs. Syntactic Sugar
	Final Thoughts

